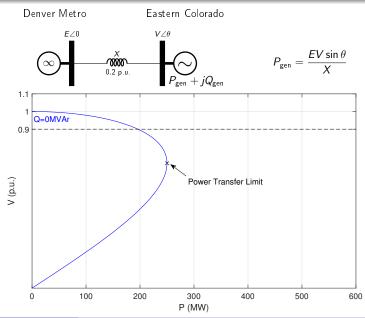
Coal Generation Retirement and Load Serving Capability in Colorado

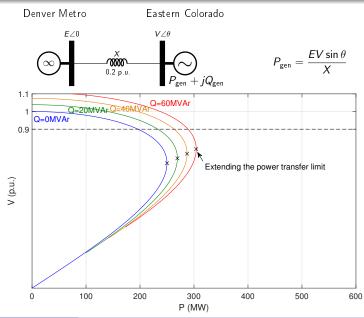
Sina Baghsorkhi

GridNumerics™

June 17, 2021

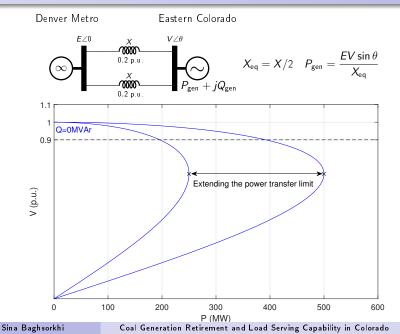

Sina Baghsorkhi

Coal Generation Retirement and Load Serving Capability in Colorado 1 / 30


• Power Transfer in a Radial Path

- Power Transfer between Regions: An Illustrative Example
- Power Transfer between WECC and Colorado: Study Results
- Grid Numerics Platform

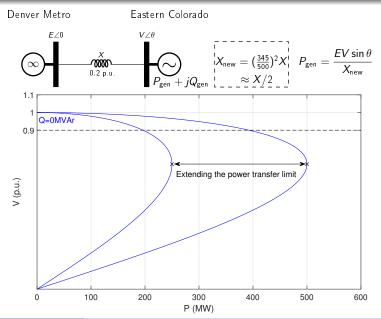
Power Transfer: Radial Path


Power Transfer: Reactive Compensation

Sina Baghsorkhi


Coal Generation Retirement and Load Serving Capability in Colorado 4 / 30

Power Transfer: Building New Lines

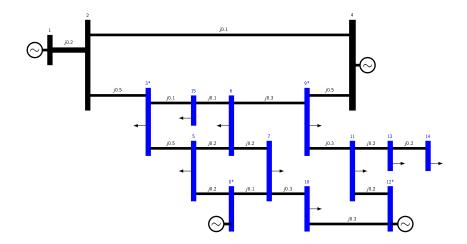


5 / 30

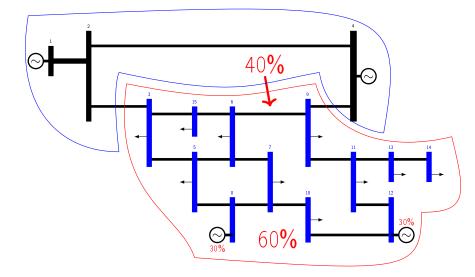
Power Transfer: Series Compensation

Power Transfer: Choosing Extra High Voltage

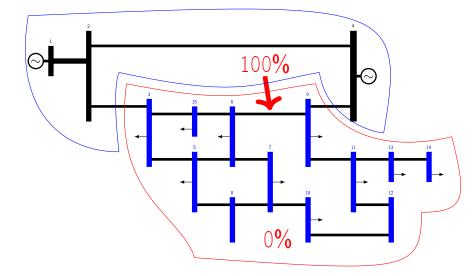
Coal Generation Retirement and Load Serving Capability in Colorado 7 / 30

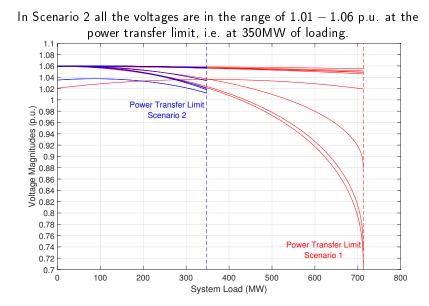

Enhancing the Power Transfer Capability

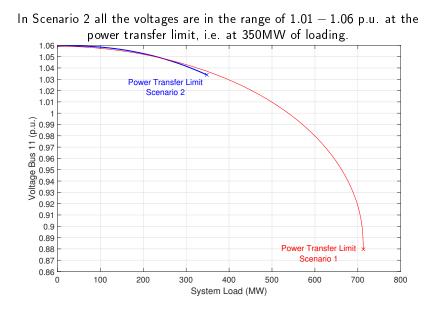
- Build new transmission lines
- 2 Series compensation
- Increase the base operating voltage from 230 to 345 or even 500kV


Injecting reactive power is not a solution and could destabilize the system!

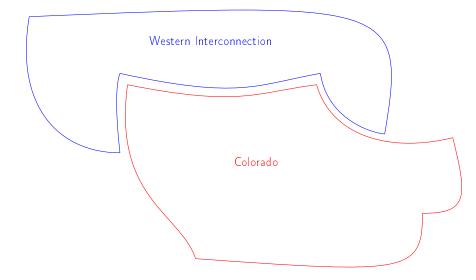
- Power Transfer in a Radial Path
- Power Transfer between Regions: An Illustrative Example
- Power Transfer between WECC and Colorado: Study Results
- Grid Numerics Platform


Inter-regional Power Transfer: An Example

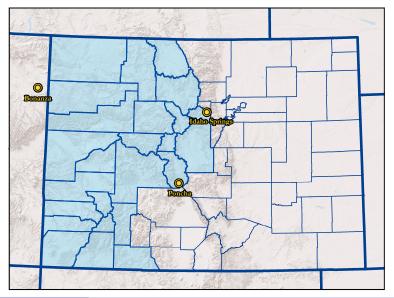

Dispatch Scenario 1: 60% local, 40% from outside


Dispatch Scenario 2: 0% local, 100% from outside

Power transfer limit can occur at normal voltages



Power transfer limit can occur at normal voltages



- Power Transfer in a Radial Path
- Power Transfer between Regions: An Illustrative Example
- Power Transfer between WECC and Colorado: Study Results
- Grid Numerics Platform

Power Transfer between WECC and Colorado

Western Colorado

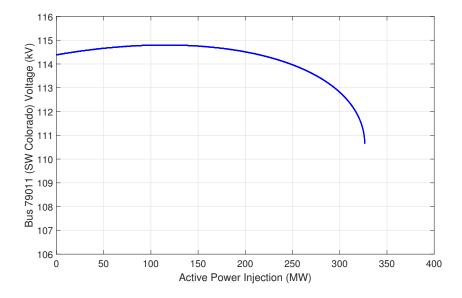
Methodology

Contrast the load serving capability of the grid in Western Colorado before and after the retirement of Craig 1,2&3 and Hayden 1&2 units:

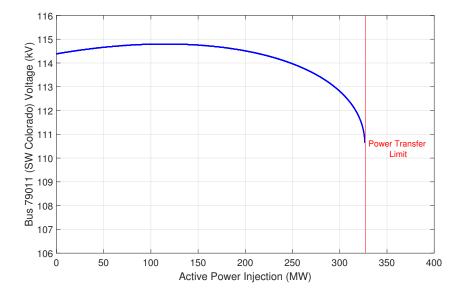
- Craig 1: 470MW
- Craig 2: 470MW
- Craig 3: 478MW
- Hayden 1: 202MW
- Hayden 2: 285MW

Roughly 1900MW of coal generation in NW Colorado is to be retired.

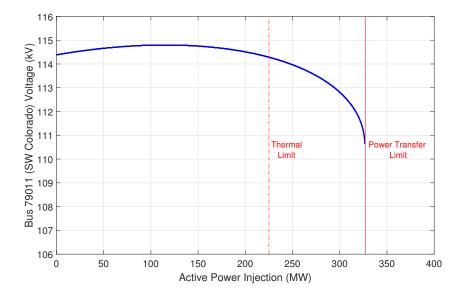
Methodology

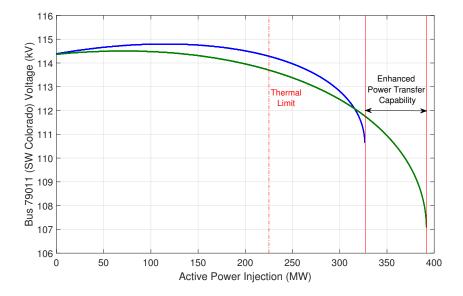

Contrast the load serving capability of the grid in Western Colorado before and after the retirement of Craig 1,2&3 and Hayden 1&2 units:

- Craig 1: 470MW
- Craig 2: 470MW
- Craig 3: 478MW
- Hayden 1: 202MW
- Hayden 2: 285 MW


Roughly 1900MW of coal generation in NW Colorado is to be retired.

But how to develop an objective and meaningful metric for load serving capability? A metric that can model and anticipate previous power transfer limit events in the West Coast or Texas?

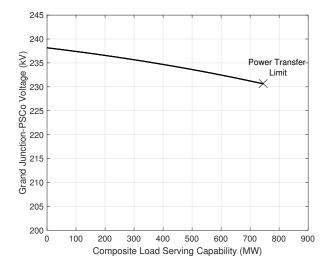

PV Curves: Classical approach with limited usefulness

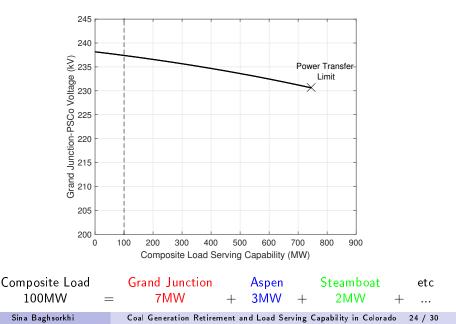

PV Curves: Classical approach with limited usefulness

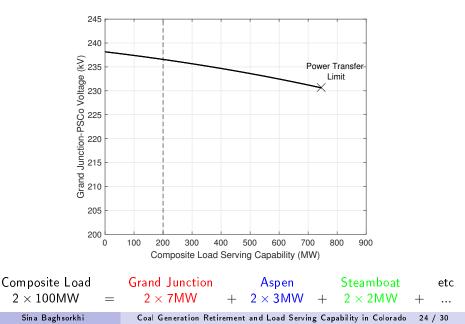
Thermal limits encountered well before power transfer limits

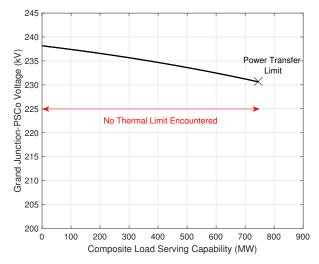
Mitigation irrelevant with thermal limits already encountered

Stress the system by increasing generation and load *simultaneously* at *multiple* nodes until reliability issues, either thermal or transfer limits, are encountered:

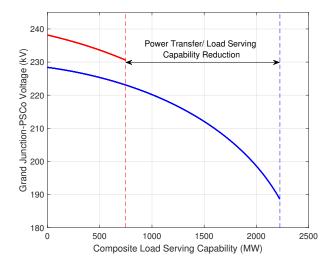

- The multi-dimensional change in load and generation captures more realistically how a normal operating condition could evolve into a reliability situation.
- Extremely complicated to model
- No industry software or systematic approach to stress the system in a multi-dimensional manner.

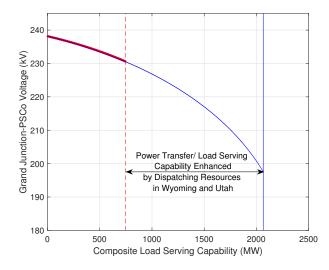

Composite Load Participation Factors (%)


	ID	Substation	Voltage	%		ID	Substation	Voltage	%]
	66278	RANGLEY	138	4	1	72800	EMONTROS	115	1	Ī
	70009	CRAIG YV	230	1	1	73061	FRASER	138	1	1
	70055	BNVST	115	1	1	73220	WINDYGAP	138	1	1
	70089	CARBNDAL	115	1		79006	BEAVERCU	115	2	1
	70109	UNA_ORCH	69	2	1	79018	CRYSTLPS	115	1	1
	70113	CLIFTON	230	3	1	79037	GUNNISON	115	1	1
	70114	CLIMAX	115	3		79042	HOTCHKIS	115	1	1
	70206	GRANDJPS	230	7	1	79056	RIFLE_CU	138	1	1
	70214	GRANDJCT	69	3	1	79065	STEAMBT	230	2	1
	70218	HENDERPS	115	1		79066	VAIL	115	2	1
	70233	HORIZON	230	3	1	79067	VERNAL	138	1	1
	70268	ADOBE	230	1	1	79069	WOLCOTT	230	1	1
	70281	MAYFLOWR	115	2		79075	EMPIRETS	115	1	1
	70287	MILL	115	3	1	79076	AM EAST	115	1	1
	70299	STKGULCH	230	5	1	79077	BAYFIELD	115	2	1
	70304	OTEROTP	115	1		79078	BODO	115	4	1
	70309	PARACHUT	230	2	1	79079	BULLOCK	115	2	1
	70357	BENCH	230	5	1	79081	CRSTBUTT	115	1	1
	70438	UINTAH	230	3		79082	HAPPYCAN	115	1	1
	70541	ASPEN_PS	115	3		79086	PAGOSA	115	1]
	70542	SNOWMASS	115	1		79092	AVON	115	1	1
	70560	BASLTDST	115	1		79099	FLOR.RIV	115	2	1
	72137	TELLURID	115	1		79103	GARNET M	115	3]
	72780	GOODMNPT	115	1		79108	HOVENWEP	115	2]
	72781	DOECANYN	115	1		79118	Y.JACK W	115	1]
	72784	AIR_PROD	115	1		79127	SYLVSTGU	115	1]
	72786	BASKTMKR	115	1		79400	DES.MINE	138	1]
C	ina Bacher	with C	and Conception	n Patin		+ and load	d Serving Conchility	in Colorado	22/	

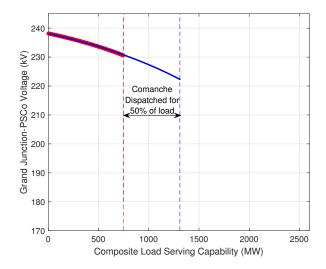

Sina Baghsorkhi

Coal Generation Retirement and Load Serving Capability in Colorado 23 / 30

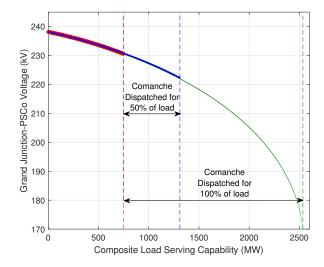



750MW increase in load can push the system to its power transfer limit without causing a single thermal overload!

Dispatch Resources in NW (Washington/Oregon)


Distributed Slack: Grand Coulee 50%, John Day 25%, Klamath Falls 25%

Dispatch Resources in the Rocky Mountain Region


Distributed Slack: Intermountain (UT) 50%, Jim Bridger (WY) 50%

Partial Dispatch of Resources in Colorado

Distributed Slack: Comanche 50%, Grand Coulee 25%, John Day 25%

Dispatch Resources in Colorado (if available!)

The power transfer capability between Colorado and the rest of the Western Interconnection is limited. How to mitigate this issue?

- Better integrate Colorado's grid into the Western Interconnection through new transmission lines.
- Better integrate Colorado's grid into the Eastern Interconnection by building new DC ties.
- Reduce the variability of renewable generation through spatial distribution and diversifying the resource mix between solar, wind and storage.

Unless this inter-regional power transfer capability is addressed with a combination of measures that *better integrates* the Colorado grid into the Western and Eastern Interconnections and *reduces the variability* of renewable generation resources, removal of large-scale centralized generation *may* cause load serving issues or partial blackouts.

Grid Numerics: A New Platform for Analyzing Power Transfer

Based on 21st Century Mathematics Extremely Fast and Robust Highly Versatile

Software Inquiries: info@gridnumerics.com